

FACILITIES PLANNING, DESIGN & CONSTRUCTION

Sixth Avenue and Grant Street • P.O. Box 172760 • Bozeman, Montana 59717-2760 Phone: (406) 994-5413 • Fax: (406) 994-5665

REQUEST FOR PROPOSAL

Project Ti Location:	tle: <u>Cooley Laboratory Renovation</u> <u>Montana State University</u>	PPA No.: 10-0023 RFP No.: 40 Date: 04/12/12
To:	Dick Anderson Construction 4498 Jackrabbit Lane Bozeman, MT 59718	Attention: <u>Platisha</u>
From:	Cecilia Vaniman, Project Manager Cooley Lab Renovation Montana State University	Attention:
-	e the Work and avoid or minimize delays in the Work the is requested. Please return a response by: 04/19/12	Date Sent: <u>04/12/12</u> Date Received:

RFP Provide EDDY CURRENT TESTING for Chiller

Reference Drawings: N/A

Reference Specifications: N/a

Please provide Eddy Current Testing for the Centrifugal Water Chiller Evaporative Tubes and Condenser Tubes as described In the attachment..

Attachment: McQUAY Centrifugal Chiller Specifications

Eddy Current Testing Procedure

This RFP is for pricing purposes only. The contractor shall not proceed with the scope of work described within until pricing is approved by the owner in writing.

Distribution:

Owner Agency \land Architect \land Contractor

Engineer Other

TEST PROCEDURE

A probe is manually drawn the length of the sample/specimen at a constant rate of speed, "Normally averaging 80 feet per minute". Impulses are then fed back from the probe coil to the receiving console which displays the tube's condition on an oscilloscope screen.

The equipment used is an impedance bridge. The inductive legs of the bridge are a primary and secondary coil encased within the probe. An A/C current is applied to the primary coil and generates a magnetic field, this field causes eddy currents to flow in the materials alloy. The induced eddy currents themselves set up a secondary magnetic field which is counter to that established by the probe. As the probe is inserted and wall thickness differences are encountered, the change in counter force creates a voltage impulse. The impulse results in unbalanced voltage across the impedance bridge. By utilizing dual channels and phase discrimination, defects can be presented on the CRT for interpretation.

CALIBRATION PROCEDURE

Prior to testing the material or specimen, all test equipment shall be set up and energized for a period of not less than 15 minutes to allow for stabilization of all electrical circuits.

A set of Calibration standards shall be used to initially balance the test equipment. The calibration standard shall be of the same material and geometry of the item being tested. The calibration standard shall have known defects, "either natural or machined" to provide proper defect orientation and phase angle information. Calibrate the testing apparatus at the start of the test run and at least once every four hours of continuous operation or whenever improper functioning of the apparatus is suspected. If improper functioning is found, re-calibrate the apparatus and retest all items during the period of suspected improper functioning.

(

CENTRIFUGAL CHILLER TECHNICAL DATA SHEET

CENTRIFUGAL CHILI	LER TECHNICAL DATA SHEET	DAIRINIGGUAI	
Job Name:	Cooley Lab		
Date:	9/7/2011		
Version:	07.71		
Submitted By:	Dan Fry		
Unit Description:			٦
McQuay Model Number:	WMC150DBS13R/E2212-DF-2**/	C2012-CNYY-2****/R134-BAABA	
Approval:		ian Safety Standards (ETL Label / ETLc Label)	
Chiller Data:			٦
Unit:	Compressor Type / Quantity - Size:	Centrifugal / 2 - 150	
	Capacity (ton):	145.0	
	Capacity Control:	VFD / Inlet guide vanes	
	Refrigerant:	R134-a	
	Refrigerant Charge (lb):	800	
	Oil Cooler Type:	None	
Evaporator:	Flow (gpm):	373.5	
-	LWT (°F):	44.0	
	Number of Passes:	2	
	Fouling Factor (°F.ft².h/Btu):	0.00010	
	Tube Material:	Cu	
	Tube Wall Thickness (in):	0.028	
So So	Percentage of Propylene Glycol:	35	
	Minimum Flow (gpm): (see note 3)	275.7	
Condenser:	Flow (gpm):	435.0	
	EWT (°F):	85.0	
	Number of Passes:	2	
	Fouling Factor (°F.ft².h/Btu):	0.00025	
	Tube Material:	Cu	
	Tube Wall Thickness (in):	0.028	
	Percentage of Water:	100	
Motor/Starter:	Starter Type:	VFD/Integral	
	Unit Voltage (V/Hz/Ph):	460/60/3	
	Approval Listing:	CA ETL, ETLc	
	Data Plate RLA per Unit (A): (see note 4)	140	
	Data Plate LRA per Compressor (A):	88	
	Enclosure Type:	NEMA 1 gasketed	
	Starter Location:	Terminal mounted	
	Disconnect Type:	Non-Fusible Disconnect	
	Control Circuit Transformer:	Without taps	
	Power Connection:	Single point	
	Maximum Fuse Size (A):	225	
	Data Plate MCA (A): (see note 4)	158	
	Motor Protection:	Standard	
	Ground Fault:	None	
	Ground Fault.		
	Short Circuit Current Rating:	Standard, (power panels only)	

Design Performance rated at AHRI Condenser Relief:

			Operating					Evaporator		Conde	enser
Capacity (ton)	Input (kW)	Performance (kW/ton)	RLA (A)	NPLV (kW/ton)	75% Load (kW/ton)	50% Load (kW/ton)	25 % Load (kW/ton)	PD (ft H₂O)	EWT (°F)	PD (ft H₂O)	LWT (°F)
145.0	99.1	0.684	140	0.392	0.500	0.346	0.307	33.1	54.0	8.4	94.5

CC-1

DAIKIN MCQUAY

CENTRIFUGAL CHILLER TECHNICAL DATA SHEET

DAIKIN McQUAY

					Operating		Evap	orator			Cond	enser	
Point #	%Load Request	Capacity (ton)	Input Power (kW)	Performance (kW/ton)	RLA (A)	Flow (gpm)	EWT (°F)	LWT (°F)	PD (ft H₂O)	Flow (gpm)	EWT (°F)	LWT (°F)	PD (ft H ₂ O)
1	100.0	145.0	99.1	0.684	140	373.5	54.0	44.0	33.1	435.0	85.0	94.5	8.4
2	75.0	108.8	54.3	0.500	84	373.5	51.5	44.0	33.2	435.0	75.0	81.8	8.8
3	50.0	72.5	25.1	0.346	42	373.5	49.0	44.0	33.2	435.0	65.0	69.4	9.2
4	25.0	36.3	11.1	0.307	18	373.5	46.5	44.0	33.3	435.0	65.0	67.2	9.2

	A Weighted					ĺ			
Load	Overall	63Hz	125Hz	250Hz	500Hz	1000Hz	2000Hz	4000Hz	8000Hz
100%	75.5	37.5	49.5	56.0	65.0	72.0	70.0	66.5	64.0
75%	72.5	39.5	48.5	55.0	61.0	69.5	64.5	64.0	60.0
50%	68.5	35.5	48.0	54.5	58.0	66.0	61.0	58.5	53.5
25%	68.0	36.0	48.5	54.5	57.5	65.5	60.5	57.5	52.0

Sound Pressure (dB) measured in accordance with ANSI/AHRI Standard 575-2008 (A-weighted)

Service Points rated at AHRI Condenser Relief:

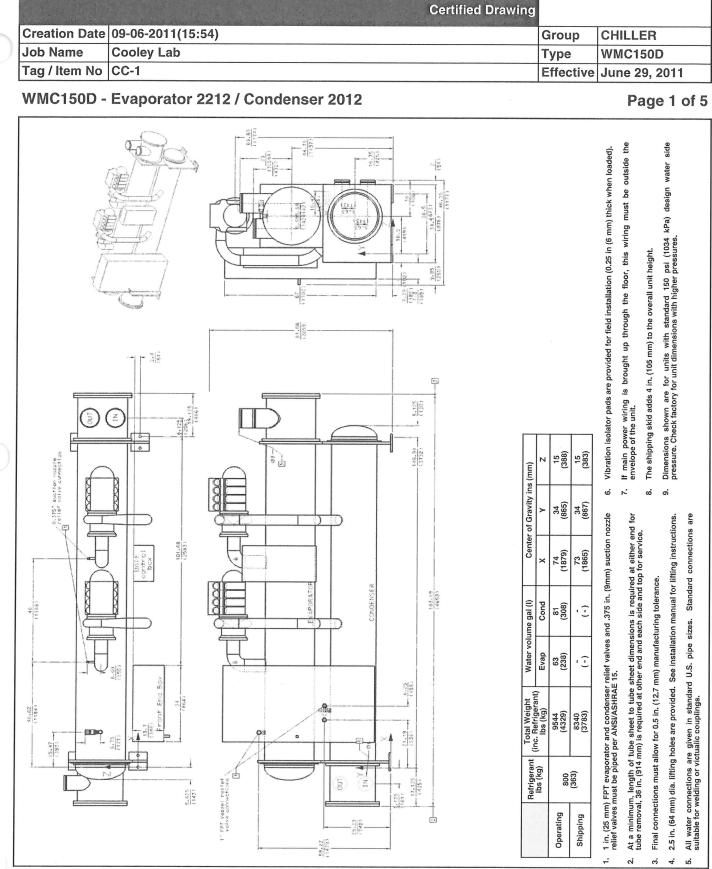
							Evaporato	r i		Condenser	
Point #	Refrig. Charge (lb)	Data Plate LRAD (A)	PD Capacity (lb)	Superheat (degF)	Subcooling (degF)	Temp (°F)	Pressure (psig)	Velocity (ft/s)	Temp (°F)	Pressure (psig)	Velocity (ft/s)
1	800	88	1,054	1.0	9.6	36.8	32.1	7.9	95.5	114.9	4.5
2	800	88	1,054	1.0	7.2	38.5	33.6	7.9	82.5	91.0	4.5
3	800	88	1,054	1.0	4.8	40.3	35.3	7.9	69.8	70.9	4.5
4	800	88	1,054	1.0	2.3	42.6	37.7	7.9	67.3	67.3	4.5

Certification:

The AHRI 60 hertz Water Cooled Chiller Certification Program covers models that:

- are rated up to 2500 tons (8790 kW cooling) at AHRI Standard Rating Conditions .
- have voltages less than or equal to 11000 volts .

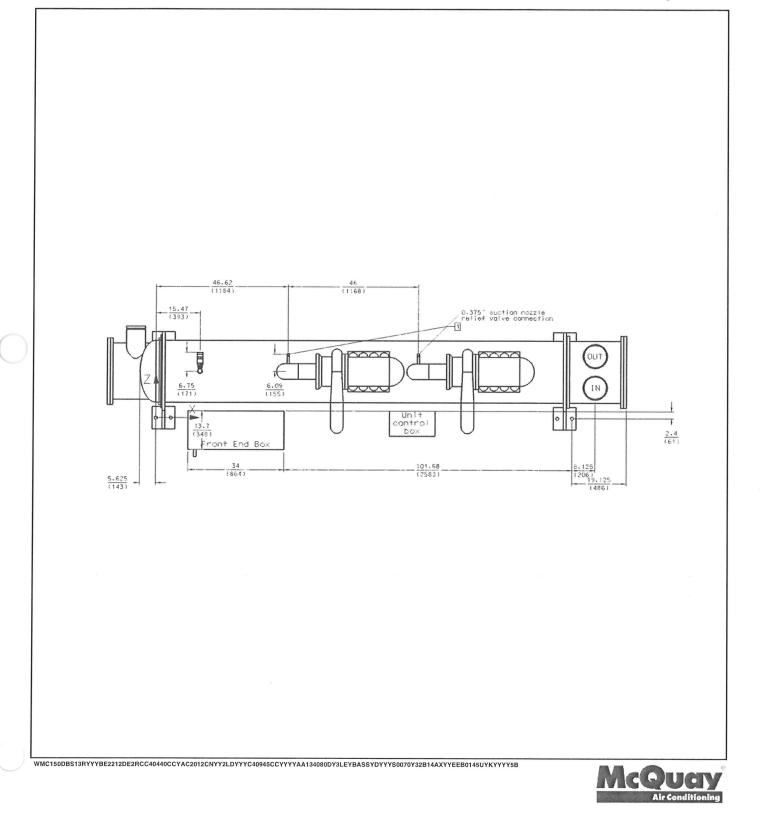
The AHRI Certification Program specifically excludes: chillers above 2500 tons (8790 kW cooling) chillers with voltages above 11000 volts


- secondary coolant ratings other than water (e.g. glycol ratings) .

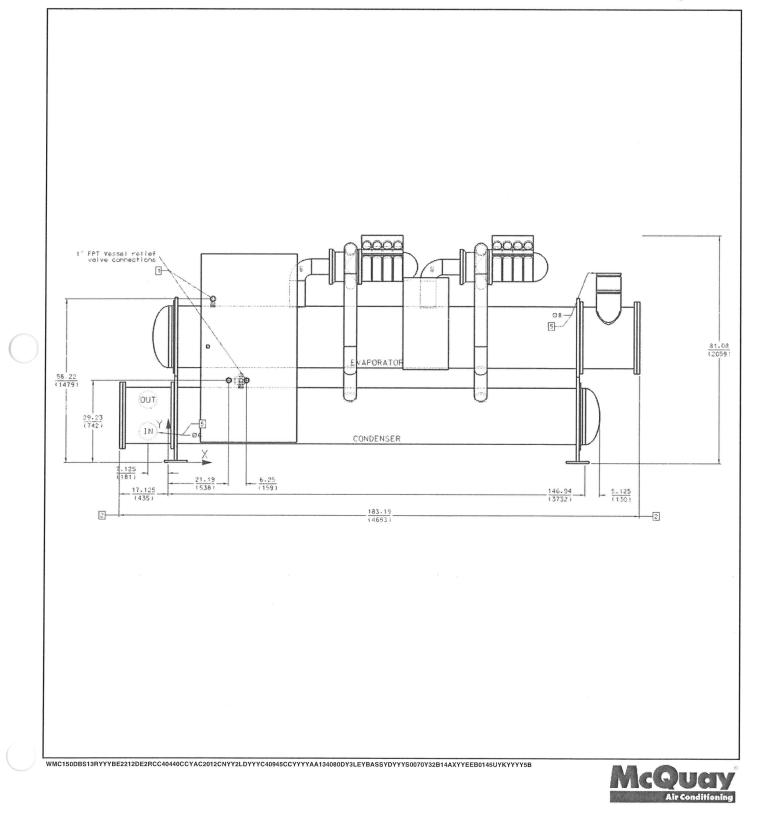
Notes:

- 1. Above RLA values are per Unit.

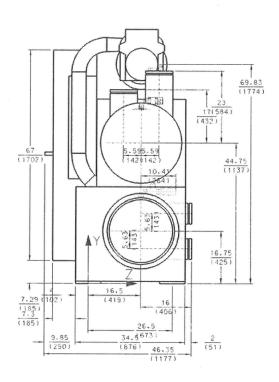
- Above RLA values are per Onit.
 Performance kW values are total kW, unless noted otherwise.
 Minimum flow is based upon standard condenser water relief and not increased lift due to constant condenser water temperature.
 The field wiring must be sized in accordance with the MCA and not the RLA as some selections may be below the minimum required protection.



WMC150DBS13RYYYBE2212DE2RCC40440CCYAC2012CNYY2LDYYYC40945CCYYYYAA134080DY3LEYBASSYDYYYS0070Y32B14AXYYEEB0145UYKYYY5B


	Certified Drawing		
Creation Date	09-06-2011(15:54)	Group	CHILLER
Job Name	Cooley Lab	Туре	WMC150D
Tag / Item No	CC-1	Effective	June 29, 2011

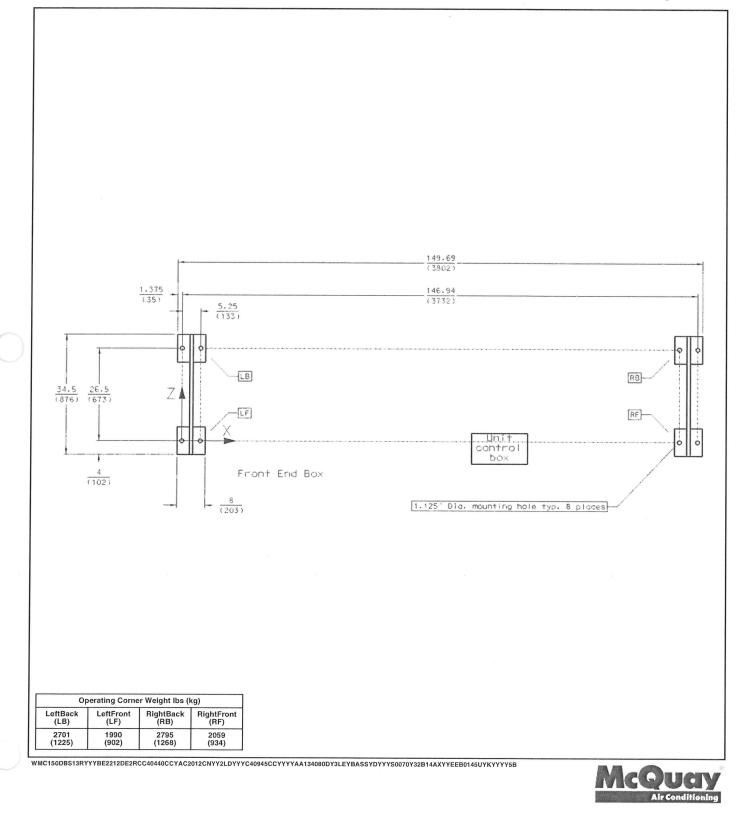
Page 2 of 5


	Certified Drawing		
Creation Date	09-06-2011(15:54)	Group	CHILLER
Job Name	Cooley Lab	Туре	WMC150D
Tag / Item No	CC-1	Effective	June 29, 2011

Page 3 of 5

	Certified Drawing		
Creation Date		Group	CHILLER
Job Name	Cooley Lab	Туре	WMC150D
Tag / Item No	CC-1	Effective	June 29, 2011

Page 4 of 5



WMC150DBS13RYYYBE2212DE2RCC40440CCYAC2012CNYY2LDYYYC40945CCYYYYAA134080DY3LEYBASSYDYYYS0070Y32B14AXYYEEB0145UYKYYY5B

	Certified Drawing		
Creation Date		Group	CHILLER
Job Name	Cooley Lab	Туре	WMC150D
Tag / Item No	CC-1	Effective	June 29, 2011

