DICK ANDERSON CONSTRUCTION,INC

Number: 27

	·					Date Issued:	09/07/11
RFI 27							
Project:	COOLEY LA	BORATORY RENOVA	ATION		POTENTIAL IMPACT	тѕ	
Job:	3146	COOLEY LAB, PF			Cost Impact: No		
Customer:	STOFMT	MSU BOZEMAN			Schedule Impact: No		
ssued To:	CONSTRUCT P.O. BOX 72' BOZEMAN, M		SERV.				
Attention: Phone/Fax:	DONALD J. F 406 585-061	PLATISHA 1 / 406 585-2698		Coordination copies to:			
tem:	PVC Coated	Ductwork		Type: ME(CH		
Reference:				Spec. Section:			
Attachments:	Product Data						
			Description	on of Request			
mil thickness in available. Curr	side and out. ent lead time	The reason we are as of today's date	e asking for this variar is 12-15 weeks to rece	quest a variance to supply nce is because G90 PVC C give the coil, and 2-3 weeks and walls. G60 4x4 coat	Coated is not reads to produce spira	dily al pipe, or	
Respond By:	09/14/11	ву: ТІМ Т	HOLT				
			R	esponse			
duct is inte	ended to b	be coated with	PVC. Only inner	ole. The RFI notes the coating is specified chitect must OK the i	and exterior i	is intende	d to be
Response	by: Dave	Broquist, GPI	Date: 9-8-11				
Per Conve	rsation with th	ne Architect (Frank)	and MSU (Cecilia) P	VC coating on the exterior i	s acceptable the	Color shall b	e White.
Cecilia Var	niman, MSU	Date 9/12/11					
		Signed	l:			Date:	
		Proceed as Indicated	l:			Date:	

RFI - REQUEST FOR INFORMATION

DATE:	RFI NO. H-001	ORIGINATOR: TCME	CONTRACT NO.
09/07/11		To: Dick Anderson Contruction	MSU Cooley Lab
BBO IECT I	DESCRIPTION:	ATTENTION OF:	,
MSU Coo		Tim Tholt	
SUBJEC	T: MSU Cooley Lab P	VC Coated Ductwork – Va	ariance Request
OPERABLE MAJOR WO		REFERENCE DWG., P.O., TAG, DEFICIENCIES)	SPECIFICATION NO. (FOR DEVIATIONS OR
Priority			
Info	rmationalLow Importa	nce ImportantH	ligh Importance <u>x</u> Urgent
PVC Coated	d Ductwork:		
• S _I	pec Calls for G90 Coated 4x1	mil Thickness PVC	
Request Va	riance to supply G60 Galvanized Co	ated 4x4 mil Thickness inside and o	out
Reason For	Variance:		
• G	90 PVC Coated is not readily oil, 2-3 weeks to produce the 60 4x4 coated Material is in some developer Specification as well as	pipe stock	e as of today's Date is 12-15 weeks to receive
			Tri-County Mechanical & Electrical, Inc.
	□ S	Yendor Material Deficiency Scope	Don Blíxt
	-	Clarification/Information Other Final Design Document	Date_ 09/07/11
RESPONS	E/DIRECTIVE:		Date usini i
REST ON	E/BIKE (TVE.		
CC: Archit	ect:		
	r's Representative: et Manager:		
			I
Super	intendent: og & File		

7800 Intervale

Fax: (313) 491-4381

www.setductmanufaturing.com

Flat Rolled Steel Processing

Duct Manufacturing

Submittal and Product Data for 4x4 Polyvinyl Coated Galvanized Steel

Product Data:

- Galvanized Base Metal:
 - Galvanized forming steel, not chem treat lightly oil, min spangle, TMPR coils G60---ASTM A653-latest revision FS Type B.
- Polyvinyl Coating:
 - 4 mil coating both sides of base metal.
 - Valshield SM White SPRL TU, DGW0037.1000
 - Entershield R PLAS, 561Y007

Process:

- Prime, hot-dipped, G-60 galvanized steel that is cleaned and fire treated.
- A special epoxy primer is bonded to both sides of the metal
- A 4-mil polyvinyl coating is heat-fused to both sides of the metal.

Product application:

 It is up to the user to determine the suitability of PVC coated galvanized for any particular product.

Available in:

- Gauges 26ga, 24ga, 22ga, 20ga
- Slit to width min of 2", max of 60"

See attached Dimensional Guide as manufactured by SET Duct Manufacturing, Inc. and in accordance with 2005 SMACNA standards.

Respectfully,

Samuel D. Gibson Cell: (734)718-2755

Email: sgibson@setenterprises.com

SUBMITTAL

PROJECT:	LOCATION:
ENGINEER:	CUSTOMER:

<u>SYSTEM</u> <u>PRODUCT</u>

PVC coated Single Wall Round Spiral Duct and Matching Fittings.

CONSTRUCTION
All spiral pipe and fittings are manufactured in accordance with the latest edition of SMACNA 2005
Duct Construction Standards.

MATERIAL

Steel is of lock-forming quality, conforming to A-653 standards manufactured as Spiral Lock-seam in accordance with the following table:

Spiral Duct Gauge Fittings

SUBMITTAL

COMMENTS:

Project: Quote #:

Project:	Project: Quote #: SINGLE WALL ROUND PIPE & FITTINGS								
	SINGLE WAL	L KOUND PIPE	. & FII IINGS						
R	A R	R	A	R					
E5-90	E3-45	SE-90	SE-45	E3-60					
AR	R	KKKKKKK A	C R	C A					
E2-30	E2-22 1/2	EV2-90	HTE3-90	HTE2-45					
	B B			€ EB-1					
T1	T1R	T2R	CT1	CT1R					
B B	45°	A 455	45°-	45° B					
CT2R	HT1	HT1R	HT2	HT2R					
L1	L1R	L2	L2R	CL1					
A B			A B	A B					
CL1R	CL2	CL2R	R1	ER1					

<u>Dimensions</u>: A = Inlet Size B = Outlet Size C, D = Branch Sizes R = Radius

Project: Quote #:

Project.	SINGLE WALL R		D FITTINGS	
	$ \begin{array}{c} $	A A		
os	ВМ	Y2	Y2	ВТ
			Axa	
BTR	DEP	FEC	SQR	DC
	A -			
FC	TP	TSP	TCP	TCSP
		45°	45°	
LP	LSP	HTP	HTSP	LCP
	Flanges In	Flanges Out	Flanges In	Flanges Out
LCSP	PRTI	PRTO	PTRBI	PTRBO
AccuFlange	SpiralMate	Angle Ring		

<u>Dimensions</u>: A = Inlet Size B = Outlet Size C, D = Branch Sizes R = Radius

Foremost Duct

www.foremostduct.com

A Division of ARK II Manufacturing, LLC 33106 W. Eight Mile Road - Farmington, Michigan 48336 - Phone 248-615-8800 - Fax 248-615-8801

PCD LAB TESTS

The following laboratory tests provide a guideline for PCD ducting of exhaust fumes. As actual conditions, such as temperature and concentration vary greatly, samples are available upon request to test and approve for each application.

E = Excellent G = Goo	d		l = Un	satisfactory **Not Tested	_
Chemical		Chemical		Chemical	
Acetoldehyde		Ammonium Nitrate	E	Bromine Water	E
Acetamide		Ammonium Monophosphate	**	Butadiene	Е
Acetate Solvents-Crude	U	Ammonium Oxalate	**	Butane	E
Acetate Solvents-Pure	U	Ammonium Persulphate	E	Butanol Primary	TE
Acetic Acid 0-20%	U	Ammonium Phosphate	Ε	Butanol Secondary	E
Acetic Acid 20-30%	U	Ammonium Sulfate	E.	Butyl Acetate	U
Acetic Acid 30-60%	U	Ammonium Sulfide	E	Butyl Alcohol	E
Acetic Acid 80%	U	Ammonium Thiocyanate	E	Butylene	E
Acetic Acid - Glacial	U	Amyl Acetate	U	Butyl Phensi	E
Acetic Acid - Vapors	U	Amyl Alcohol	Е	Butynediol	E
Acetic Anhydride	U	Amyl Chloride	U	Butyric Acid	G
Acetone	U	Aniline	U	Cadmium	**
Acetyl Chloride	Ш	Aniline Chlorohydrate	U	Calcium Bisultite	E
Acetylene	Ε	Aniline Hydrochloride	Ų.	Calcium Carbonate	E
Adipic Acid	Ε	Anthroquinone	E	Calcium Chlorate	E
Alcohol, Allyl	E	Anthroquinone Sulfonic Acid	E	Calcium Chloride	U
Alcohol, Amyl	Е	Antimony Trichloride	Е	Calcium Hydroxide	E
Alcohol, Butyl	E	Aqua Regia	U	Calcium Hypochlorite	U
Alcohol, Ethyl	Ε	Arsenic Acid	E	Calcium Nitrate	E
Alcohol, Methyl	Е	Arsenius	**	Calcium Sulfate	Е
Alcohol, Propyl	Е	Arylsulfonic Acid	E	Carbonated Beverages	**
Alkaform Anesthesia	**	Baking Oven Gases	**	Carbolic	**
Allyl Chloride	C	Barium Carbonate	E	Carbonic Acid	Ε
Alum	E	Barium Chloride	E	Carbon Bisulfide	U
Alum, Chrome	Ш	Barium Hydrate	**	Carbon Dioxide	E
Alum, Potassium	Е	Barium Hydroxide	E	Carbon Monoxide	E
Aluminum Chloride	ш	Barium Sulfate	Е	Carbon Tetrachloride	S
Aluminum Fluoride	E	Barium Sulfide	**	Castor Oil	E
Aluminum Hydroxide	ш	Beer	E	Caustic Potash	S
Aluminum Oxychloride	ш	Beet	Е	Caustic Soda	S
Aluminum - Molten	**	Benzol		Chloracetic Acid	Е
Aluminum Nitrate		Benzoldehyde		Chloralhydrate	Е
Aluminum Sulfate	Ш	Benzene Sulfonic Acid 10%	E	Chloric Acid 20%	Е
Alum Sulfuric Acid 40-70 95%		Benzoic	Ε	Chlorine Gas	G
Ammonia, Gas		Bismuth Carbonate	Ε	Chlorine Water	U
Ammonia, Liquid		Black Liquor		Chloribenzene	U
Ammonia, Aqua 10%	**	Bleach	U	Chloroform	U
Ammonium Acetate	**	Borax	E	Chlorosulfonic Acid	Е
Ammonium Bifluoride		Boric Acid	Е	Chrome Alum	Ε
Ammonium Bromide		Boron Trifluoride	E	Chromic Acid 50 %	U
Ammonium Carbonate		Bordeaux Mixture	**	Cider	**
Ammonium Chloride	E	Breeder Pellets	E	Citric	E
Ammonium Clouride 25%		Brine	E	Copper Carbonate	**
Ammonium Hydroxide 28%		Bromic Acid	Е	Copper Chloride	E
Ammonium Metaphosphate	Ε	Bromine Liquid	U	Copper Cyanide	Е

E = Excellent (3 = Good	S = Satisfactory U	= Un	satisfactory **Not Tested	
Chemical		Chemical		Chemical	Т
Copper Flouride	E	Glycol	E	Methyl Chloride	U
Copper Nitrate	E	Glycolic Acid		Methyl Sulfate	E
Copper Sulfate		Green Liguor		Methyl Sulfuric Acid	Е
		Heptaine		Methylene Chloride	Ū
Cresol		Hexane		Milk	E
Cresole	**	Hexanol Tertiary	E	Mineral Oil	E
Cresyic Acid 50%	**	Hydrobromic Acid 20%	E	Mine Water	**
Croton Aldehyde	U	Hydrochloric Acid 35%	E	Mixed Acids	U
Crude Oil		Hydrochloric Acid 50%	E	Molasses	E
Cyclchexanol		Hydrocyonic Acid 10%	E	Molybdic	**
Cyclophexonon		Hydrofluoric Acid 50%	Е	Monoethanolamine	**
Demineralized Water	E	Hydrogen	E	Naptha	E
Dextrin	E	Hydrogen Cyanide	TE	Napthalene	U
Dextrose		Hydrogen Peroxide 50%	E.	Nickel Chloride	E
Diazo Salts		Hydrogen Phosphide		Nickel Nitrate	E
Diglycolic Acid		Hydrogen Sulfide Dry+		Nickel Sulfate	Е
Dimethylamine		Hydrogen Sulfide Agueous Sol		Nicotine	Е
Dioctylphthalate		Hydroquinone		Nicotinic Acid	Е
Disodium Phosphate		Hydroxylamine Sulfate		Nitric Acid 10%	E
Ethers		Hypochlorous Acid		Nitric Acid 70%	U
Ethyl Acetate			_	Nitric Acid 100%	U
Ethyl Acrylate		Jet Fuel JP-4		Nitrobenzene	Ū
Ethyl Alcohol	E	Jet Fuel JP-5		Nitrous Acid 10%	**
Ethyl Chloride	U	Kerosene	TE	Nitrous Oxide	E
Ethyl Ether	U	Ketones	Ū	Ocenol	E
Ethylene Bromide		Kraft Liquor	TE		E
Ethylene Chlorohydrin		Lactic Acid 25%	İΕ	Oleic Acid	Ε
Ethylene Dichloride		Lactic Plus Salt	**	Oleum	U
Ethylene Glycol			E		E
Fatty Acid	E	Lauric Acid		Oxygen	E
Ferric Chloride	**	Lauryl Chloride			G
Ferric Nitrate	E	•	**	Palmitic Acid 10%	İΕ
Ferric Sulfate		Lead Acetate	E	Palmitic Acid 70%	E
Ferrous Chloride		Lemon Oil	**	Peracetic Acid 40%	**
Ferrous Sulfate	E	Linseed Oil	ΤE		E
Florine Gas	E	Linoleic Acid		Perchloric Acid 70%	Ū
Fluorobonic Acid		Liqueurs		Phenol	Е
Fluorosilicic Acid	Е	Lubricating Oil	**	Phenylhydazine	U
Formaldehyde		Lysol		Phenylhydazine Hydrochloride	U
Formic Acid		Magnesium Carbonate		Phosgene Liquid	U
Freon-12		Magnesium Chloride		Phosgene Gas	E
Fructose		Magnesium Hydroxide		Phosphoric Acid 10%	E
Furfural		Magnesium Nitrate		Phosphoric Acid 25 - 50%	Ē
Gallic Acid		Magnesium Sulfate		Phosphoric Acid 50 - 85%	Ē
Gas Coke Oven	E	Maleic Acid		Phosphorous Yellow	E
Gas Natural	Ē	Malic Acid	ΤĒ	Phosphorous Pentoxide	Ē
Gas Manufactured	Ū	Meats	**	Phosphorous Trichloride	Ū
Gasoline	Ē	Mercury	E	Photographic Solutions	Ē
Gold Cyanide Electropla		Mercuric Chloride		Picric Acid	Ū
Glauber's Salt	**	Mercuric Cycnide	_	Plating Solutions, Brass	**
Glucose	E	Mercurous Nitrate		Plating Solutions, Cadmium	**
Glycerine		Methane		Plating Solutions Chrome 25%	**
		Methyl Alcohol		Plating Solutions Chrome 40%	**
·		INIGUTYI AICOHOL		rialing Solutions Unforme 40%	1 "

E = Excellent G = Goo	od	S = Satisfactory U	J = Un	satisfactory **Not Tested	
Chemical		Chemical		Chemical	1
Plating Solutions Copper	**	Soap Solutions	E	Sulfuric Acid 70%	İΕ
Plating Solutions Gold	**	Sodium Acetate		Sulfuric Acid 80%	E
Plating Solutions Iron	**	Sodium Benzoate		Sulfuric Acid 90%	E
Plating Solutions Lead	**	Sodium Bicarbonate		Sulfuric Acid 95%	E
Plating Solutions Nickel	**	Sodium Bichromate	**	Sulfuric Acid 100%	Ū
Plating Solutions Rhodium	**	Sodium Bisulfate	TE	Sulfurous Acid	Ē
Plating SolutionsSilver	s			Sulfur Trioxide	E
Plating Solutions Tin	**	Sodium Bisulfite		Steam and Air	**
Plating Solutions Zinc	**	Sodium Bromide	ΤĒ	Steam and CO2 and Air	**
Potassium Aluminum Sulfate	**	Sodium Carbonate	TE	Steam SO2 CO2 and Air	**
Potassium Bicarbonate	E	Sodium Chlorate	E	Syrup	**
Potassium Bichromate	Ē	Sodium Chloride	ΤĒ	Tall Oil	İΕ
Potassium Borate		Sodium Chlorite	**	Tannic Acid	ΙĒ
Potassium Bromate		Sodium Citrate	**	Tanning Liquors	ŦĒ
Potassium Bromide		Sodium Cyanide	ΤE	Tartaric Acid	Ē
Potassium Carbonate	E		E	Tetraethyl Lead	E
Potassium Chlorate Aqueous	**	Sodium Ferricyanide	╅		Ū
Potassium Chloride	F	Sodium Ferrocyanide	- 	Thionyl Chloride	ΙŬ
Potassium Chromate	**	Sodium Fluoride	**	Thread Cutting Oils	**
Potassium Cyanide	E		E	Titanium Tetrachloride	E
Potassium Dichromate	E	Sodium Hydroxide 30%	S.		υ
Potassium Ferricyanide	늗	Sodium Hydroxide 70%	s	Toluene Kerosene Mixture	**
Potassium Ferrocyanide	냩	Sodium Hypochlorite	E	Tomato Juice	**
Potassium Fluoride	F	Sodium Iodide	**	Toxaphene-Xylene	**
Potassium Hydrate	**	Sodium Lactate	**	Tributyl Phosphate	U
Potassium Hydroxide	E		TE	Trichloroacetic Acid	**
Potassium Hypochlorite	**	Sodium Nitrite	T E	Trichloroethylene	U
Potassium Iodine	**	Sodium Peroxide	**	Triethanolamine	**
Potassium Nitrate	F	Sodium Phosphate	**	Triethylamine	**
Potassium Oxalate	**	Sodium Sulfate	E	Trimethylpropane	E
Potassium Perborate	F	Sodium Sulfide	ΗĒ	Urea	官
Potassium Perchlorate		Sodium Sulfite	E	Uric	E
Potassium Permanganate 10%		Sodium Thiosulfate 20% +		Urine	E
Potassium Persulfate	E	Acetate Acid 20%	**	Vegetable Oil	**
Potassium Sulfate	E			Vegetable Juices	**
Propane	E	Potassium Meta Bisulfate	**	Vinyl Acetate	U
Propargyl Alcohol		Soda Ash	**	Visco 202 Crude Oil Additive	**
Propyl Alcohol		Sour Crude Oil	- <u>-</u>	Water	E
Propylene Dichloride	_	Speculum Plating Solution	**	Water Acid Mine	TE
	**	Stannic Chloride	E	Water Demineralizec	E
Pyrogallic Pyroligneus	**	Stannous Chloride	E	Water Distilled	E
Rayon Coagulating Bath		Stearic Acid		Water Salt	E
Salenic Acid Aqueous	E	Stoddard's Solvent		Water Sewage	E
Salicic Acid Aqueous	E	Succinic	**	Whiskey	E
	**	·	**		E
Salicylaldehyde		Sulfated Detergents		White Liquor	E
Sea Water	E **	Sulfur Sulfur Chloride	E **	Wines	
Sauerkraut Brine		•		Xylene or Xylol	U
Selenic Acid	E	Sulfur Dioxide Dry		Zinc Chloride	E
Silicic Acid	E **			Zinc Chromate	E
Silver Bromide		Sulfur Oxychloride		Zinc Cyanide	E **
Silver Overide Fleetreplete Sel	E		_	Zinc Molten	
Silver Cyanide Electroplate Sol.	S			Zinc Nitrate	E
Soaps	Е	Sulfuric Acid 60%	ĮΕ	Zinc Sulfate	Ε